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1. Introduction

The usual procedure for constructing background field configurations of string and M theory

involves two steps. Firstly, the low energy fields are defined on coordinate patches in an

atlas covering some manifold. A consistent global picture is then created in the second

step by insisting that where coordinate patches overlap the different field configurations

describe the same physical setup. This is usually achieved by relating the relevant local

fields on different coordinate patches by diffeomorphisms and gauge transformations. We

shall refer to such backgrounds as “geometric” as the resulting configurations include a

globally well defined metric tensor.

One can carry out the second step of requiring a consistent global picture in other

ways (see [1] for the first general consideration and discussion of this). Any symmetry of

the theory can be used to join together coordinate patches while still fulfilling the criterion

that the various field configurations on overlapping patches describe the same physics. For

example, in a toroidally compactified type II string theory one could use elements of the

O(d, d) T-duality group as transition functions [1 – 16]. This results in what Hull has called

a “T-fold” [1]. In general, there is no globally defined metric tensor on a T-fold. This is a

consequence of the fact that T-duality transformations mix up the internal components of

metric with those of the NS-NS two form. We will therefore follow the literature in referring

to such spaces where the metric “jumps” between coordinate patches in this manner as

“non-geometric”. The idea of patching a manifold together with duality transformations,
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to obtain these so-called “duality-folds” [1], has been pursued by a number of authors over

the last few years (see [1 – 12] for this and related work). In passing we note that it appears

that the use of supersymmetry in performing the ‘second step’ above has not yet been

considered in the literature.

Given their unusual nature it is helpful to briefly review some of the evidence that

string theory can make sense on such backgrounds. Firstly some T-folds can be shown to

be T-dual to various, more standard, geometric spaces. For example, the T-dual of certain

torus compactifications with NS-NS flux (with an appropriate domain wall solution in the

external space) are T-folds (see for example [5, 7]). Thus one is left with two possibilities.

Either the T-fold obtained in such a manner is as good a string background as the torus

compactification with flux, or T-duality is not a feature of the full theory in that, for some

reason, the torus compactification’s T-dual is not a good string background.

A second piece of evidence which indicates that we should take T-fold backgrounds

seriously within the context of string theory is provided by their relation to certain well

defined conformal field theories (CFTs) [5]. It is well known that certain smooth geometric

backgrounds of string theory have limits in which they become orbifolds of flat space. The

associated world sheet CFT can then be described in detail. In a similar manner there are

limits of certain T-fold compactifications which are associated with well understood con-

sistent CFTs [5]. In this case the relevant orbifolds are asymmetric examples in which the

left and right moving degrees of freedom on the string world sheet are acted on differently

by the orbifolding [17].

Once it is accepted that it makes sense to consider string theory on these T-fold

backgrounds the next obvious question is why are these configurations interesting? There

are a multitude of interesting consequences which follow from considering string and M-

theory on various symmetry folds. One strong motivation for studying such backgrounds

is that they have been found to typically possess fewer unstabilised moduli than more

conventional compactifications [5, 6, 8, 9]. It is reasonably straight forward to see why this is

so. Unstabilised moduli in lower dimensional theories correspond to unspecified integration

constants in the associated higher dimensional vacuum solutions. The use of a larger set of

symmetries (such as the full T-duality group instead of just some “geometric” subgroup)

in patching together a compactification manifold effectively constitutes a more restrictive

set of boundary conditions on the possible vacuum solutions. As such the solutions tend

to have fewer unspecified integration constants, leading to fewer unstabilised moduli in

the lower dimensional theories. However, within the context of phenomenology, where

considerations of moduli stabilisation would be most important, the use of these spaces

raises various problems. This is because, for all values of the moduli, the known examples

of non-trivial T-folds contain cycles of string scale size. This leads to concerns about the

lack of a mass gap above the standard supergravity modes as well as concern that non-

perturbative effects could well be important. These difficulties may well be resolvable in

some cases. For example, it is easy to build examples of T-folds where one can show

that, despite these comments, the size of non-perturbative effects in the superpotential is

controlled by the volume of the base manifold and not that of the fibre [18]. In addition,

there are such examples where only a finite number of extra light states would have to be
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included before a mass gap with the rest of the spectrum is obtained. However, in the

interests of being conservative, and to show that our work is of interest whether or not

these issues are resolvable, we shall state our motivation in this paper in terms of a different

use for T-fold compactification.

An uncontroversial use of T-fold compactification is to regard it as a formal tool for

finding new massive supergravity theories. Compactification of massless higher dimen-

sional type II supergravities on T-folds results in examples of lower dimensional massive

supergravities, which in some cases were previously unknown [6, 8, 11]. The supergravities

obtained in this manner can be thought of as the completion of the class of such theories

obtained by compactification on geometric spaces (for examples based upon Scherk Schwarz

reduction see [19 – 36]). In particular, these new sugras fit nicely into certain classifications

of such theories, one of which is based on an O(d, d) group of transformations [32, 11].

One of the most basic questions one would like to answer about these lower dimensional

supergravity theories is how much supersymmetry they possess. This reduces to a question

about the nature of the truncation of the higher dimensional fields which is used in the

reduction. More precisely, the question is which of the higher dimensional supersymmetries

are compatible with the different forms of truncation that one might use? This is the

question we shall answer in part in this paper - how many supersymmetries are enjoyed by

a theory obtained by T-fold compactification with a certain natural choice of truncation?

Our discussion will make it clear how to calculate the number of such supersymmetries

associated with a large class of theories resulting from T-fold compactification. However,

in the interests of clarity we will illuminate our considerations with the example of com-

pactifications of type II string theory on T-folds which take the form of a T d bundle over

S1, where the torus experiences a monodromy in SO(d, d, Z) around the base S1. Similar

compactifications have been considered in Refs. [6, 8, 11]. We will extend this work by

incorporating extra terms originating from the NS B-field in the dimensional reduction

and will then proceed to calculate the amount of supersymmetry that is manifest in the

compactified theories obtained. To do this we will use and extend work in the litera-

ture [37 – 39] where the rules for the transformations of supersymmetry parameters under

T-duality have been given. We will then use a modified version of the criterion for preserva-

tion of supersymmetry in dimensional reduction, phrased in terms of G-structures [40 – 73],

to determine the number of supersymmetries manifest in the theory. The approach we will

follow, based on the work of [37 – 39], will lead us to consider the supersymmetry of theo-

ries which result from compactification upon T-folds constructed using a certain minimal

version of compactified supergravity. In particular, we will not consider cases arising from

constructions where a coset reformulation of the theory obtained by reducing on the fibre

of the T-fold is utilised in forming the overall compact space. See appendix A and later

sections of the paper for more details.

The plan of this paper is as follows. In section 2 we shall introduce the T-fold back-

grounds that we will be using as examples in the rest of the paper. We will then review

dimensional reduction on such a background to illustrate the kind of massive supergravity

that can be obtained in this manner. In section 3 we shall describe how to calculate the

amount of supersymmetry associated with a class of theories obtained by T-fold reduction
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using the examples of the previous section to illustrate our method. We will describe first

how the usual arguments proceed in the case of geometric dimensional reduction before

going on to describe how this analysis changes in the T-fold case. In section 4 we briefly

conclude.

2. Examples of massive supergravities from T-fold reduction

2.1 Examples of T-fold vacua for dimensional reduction

The examples of duality-folds that we will consider are the class of T-folds which have been

studied in [6, 8]. We start by considering a type II superstring theory on a T d bundle over

M9−d × S1 (the discussion and notation of this subsection follows that of [25]). However,

we are not going to take the trivial vacuum on this space. Instead we consider a situation

where the various fields in the theory have a dependence on the S1, which has coordinate

y ∼ y + 2π, of the following form,

ψ(y) = g(y)[ψ] . (2.1)

Here ψ is a general field which is taken to be independent of the T d directions. We then

make a Scherk-Schwarz ansatz [19, 20] for g(y),

g(y) = exp

(

yT

2π

)

(2.2)

where T is in the Lie algebra of SO(d, d), which is a subgroup of the T-duality group associ-

ated with the T d fibre. This ansatz ensures that a solution to the lower dimensional theory,

obtained by compactification on this vacuum, is also a solution to the higher dimensional

equations of motion up to the relevant approximations. As such it guarantees that we do

not need to worry about such subtleties as compensators in the dimensional reduction.

The resulting field configurations are not periodic on traversing the S1. Instead there is a

monodromy,

M(g) = eT . (2.3)

This is simply an element of SO(d, d). In other words, when we traverse the circle once

the fields are not identified in the usual way, but instead come back to themselves up to

an SO(d, d) element of the T-duality group. In fact we should choose the monodromy to

be within SO(d, d, Z) as this is the relevant symmetry subgroup of the full theory when

massive states, which we have truncated, are included. Note that since we are making

this Scherk-Schwarz ansatz we will only be able to consider elements of the full T-duality

group, O(d, d, Z), which are continuously connected to the identity in O(d, d,R).

The resulting vacuum is an example of a T-fold [1]. The field configurations at y = 0

and y = 2π are not simply related by diffeomorphisms and gauge transformations. A less

trivial element of the T-duality group is required to transform them into one another. This

vacuum is then non-geometric in the sense that there is not a globally well defined metric

in ten dimensions. This is because the transition functions mix up the metric and NS-NS

two form on the toroidal fibre when we go once around the circle.
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2.2 Massive supergravities from dimensional reduction on T-folds

We will now describe how the low energy effective action associated with a dimensional

reduction on one of the T-folds of the previous subsection is obtained. Many, but not all,

of the terms in the reduced theory that we will present have been obtained elsewhere [6, 8].

However, it is useful to provide a discussion of the dimensional reduction here both to keep

this paper reasonably self contained and also to complete the dimensional reduction of the

ten dimensional NS-NS sector. To our knowledge some terms of this reduction, descending

from the three form field strength, have yet to appear in the literature. Since this paper

first appeared the relation between reductions of the type we are going to present here

and so called ’twisted torus’ reductions (see for example [11, 32]) has been demonstrated

in [12].

For the sake of brevity we will consider a T 2 fibre, i.e. we will compactify on a T 2

bundle over S1. The generalisation of this to the T d case is straight-forward. The starting

point for our dimensional reduction is the ten dimensional low energy effective action of

type II superstring theory. Again, for the sake of brevity, and because it is common to

both IIA and IIB, we only consider the NS-NS sector.

S10 =

∫

M10

dx
√−ge−φ

[

R + (∂φ)2 − 1

12
H2

]

. (2.4)

The simplest procedure to follow for the reduction is to first reduce on the T 2 fibre and

then perform a further reduction on the base space incorporating our non-trivial twist. As

such we require an effective eight dimensional action for the reduction of the above theory

on the T 2 fibre in which the O(2, 2) duality group is manifest. Such an eight dimensional

action is given in the seminal paper by Maharana and Schwarz [74]. We will not repeat

their calculation here but shall simply quote the results. They obtain,

S8D =

∫

M8

d8x
√−ge−φ(8)

[

R(8)+(∂φ(8))2+
1

8
tr(∂M−1∂M)− 1

4
F i

µνM−1
ij Fµνj − 1

12
H2

]

,

(2.5)

where the three form field strength and eight dimensional dilaton are defined by,

Hµνρ = ∂µBνρ −
1

2
Ai

µηijF i
νρ + cyclic permutations , (2.6)

φ(8) = φ − 1

2
log detG . (2.7)

In these expression we have also defined,

M =

(

G−1 −G−1B

BG−1 G − BG−1B

)

(2.8)

where B and G are the NS two form and metric on the fibre respectively. Finally, if we

denote the two coordinate indices on the fibre as θi, the gauge potentials are given by

Ai
µ = Gµθi i = 1, 2, (2.9)

Ai
µ = Bµθi−2 + Bθi−2θjAj

µ i = 3, 4,

and the field strengths are simply F i = dAi.
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In this formulation, the various fields transform under an O(2, 2) transformation as

follows,

M → ΩMΩT (2.10)

Aµ → ΩAµ . (2.11)

Here Ω is the O(2, 2) matrix, satisfying ΩT ηΩ = η, where in our conventions the invariant

metric is given by,

η =

(

0 1

1 0

)

. (2.12)

Given the O(2, 2) covariant form of the action in (2.5), we now make an ansatz for the

dimensional reduction on the base of our T-fold. From the discussion in the previous

subsection our ansatz takes the following form,

ds2
8 = g7

αβ(xγ)dxαdxβ + e2α
(

dy + AB
α (xγ)dxα

)2
(2.13)

φ(8) = φ(8)(xα) (2.14)

M = Ω(y)M0(x
α)ΩT (y) (2.15)

Ai = Ωi
j(y)A0j

α (xβ)dxα + Ωi
j(y)A0j

y (xβ)dy (2.16)

B =
1

2
Bαβ(xγ)dxα ∧ dxβ + BB

α (xγ)dxα ∧ dy (2.17)

where xα are coordinates on the 7-dimensional non-compact space and

Ω(y) = e
y

2π
T (2.18)

defines the monodromy. We can now perform the reduction on the base space.

The reduction of the Ricci scalar and dilaton terms to seven dimensions is unaffected

by our duality twists. As such the expressions for these terms are the standard ones.

S1 =

∫

M7

dx
√

−g7e−φ(7)

[

R(7) − (∂α)2 + (∂φ(7))2 − 1

4
e2α(FB)2

]

. (2.19)

Here we have defined the usual seven dimensional dilaton φ(7) = φ(8) − α.

The reduction of the remaining scalar kinetic terms does get modified by the duality

twist. The resulting kinetic terms are the usual ones but the derivative involved is replaced

by a covariant derivative with a non-trivial connection. In addition a potential for these

fields is obtained. This potential and its properties have been discussed in some detail in

[6]. The relevant terms are,

S2 =

∫

M7

dx
√

−g7e−φ(7)

[

1

8
tr

(

DM−1
0 DM0

)

− 1

4(2π)2
tr(T T M−1

0 TM0 + T 2)

]

. (2.20)

Here we have defined a covariant derivative of M0 as follows.

DαM0 = ∂αM0 −
TM0

2π
AB

α − M0T
T

2π
AB

α (2.21)

where M0(x
α) is defined by M(xα, y) = Ω(y)M0(x

α)Ω(y)T .
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The reduction of the vector field strength terms is a little more subtle. If we wish

the result of the dimensional reduction to take an elegant form then we must ensure that

we have made reasonable choices for our definitions of the seven dimensional fields [74,

32].

For example, consider the behaviour of the vector fields under an xα dependent shift

of the y coordinate, dy → dy′ = dy + ∂αωydxα.

A → A′ = A′0i
α dxα + A′0i

y (dy + ∂αωydxα) . (2.22)

Thus we find that, while A0i
y is unchanged by such a transformation, A0i

α is not a gauge

invariant definition of a seven dimensional field.

A0i
α → A′0i

α = A0i
α − ∂αωyA0i

y . (2.23)

The only seven dimensional gauge field we wish to transform non-trivially under a shift

of the base coordinate is the associated Kaluza Klein gauge field AB . As such, instead of

using A0i
α as a seven dimensional field we make a field redefinition to obtain a quantity

that has the properties we desire.

A7i
α = A0i

α − AB
αA0i

y . (2.24)

Having decided on a set of definitions for the seven dimensional fields we may proceed

with the dimensional reduction of the vector field strength terms. These terms are affected

by the duality twists and so we obtain modifications to the result obtained in an untwisted

reduction which depend on the generator T . We find for the components of the field

strength,

F j
αβ = Ωj

i (F7i
αβ + 2AB

[β∂α]A0i
y + A0i

y FB
αβ) (2.25)

F j
αy = Ωj

i (∂αA0i
y − T

2π
AB

αA0i
y − T

2π
A7i

α ) . (2.26)

Here we have defined a field strength for A7i
α in the usual way. As always in such

reductions the easiest way to proceed is to switch to using an orthonormal basis dur-

ing the reduction and then return to a coordinate basis once the result has been ob-

tained. We define the following vielbeins (barred indices denote those in an orthonormal

basis).

eµ
ν̄ =

(

e7α
ᾱ −e7β

ᾱ AB
β

0 e−α

)

eµ̄
ν =

(

e7ᾱ
α eαAB

α

0 eα

)

. (2.27)

In these expressions, e7γ̄
α e7γ̄

β = g7
αβ , etc. in the usual manner. Using these definitions

we then find the following.

−1

4
F iM−1

ij F j = −1

4
F i

ᾱβ̄M−1
ij F jᾱβ̄ − 1

2
F i

ᾱȳM
−1
ij F jᾱȳ (2.28)

where,

F i
ᾱβ̄ = e7α

ᾱ e7β
β̄
F i

αβ − 2e7α
[ᾱ e7γ

β̄]
AB

γ F i
αy (2.29)
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F i
ᾱȳ = e7α

ᾱ e−αF i
αy . (2.30)

After a little algebra the following result is obtained for the reduction of the vector

field strength terms.

S3 =

∫

M7

dx
√

−g7e−φ(7)

[

−1

4
F̃ i

αβM−1
0ij F̃ jαβ − 1

2
e−2αDαA0i

y M−1ij
0 DαA0j

y

]

. (2.31)

Here we have used the following definitions of field strengths and covariant derivatives.

F̃ i
αβ = F̃7i

αβ + A0i
y FB

αβ (2.32)

F̃7i
αβ = F7i

αβ + 2AB
[β

T i
j

2π
A7j

α] (2.33)

DαA0i
y = ∂αA0i

y −
T i

j

2π
AB

αA0j
y −

T i
j

2π
A7j

α . (2.34)

This just leaves us with the dimensional reduction of the anti-symmetric tensor terms

to perform. Despite the fact that the field strength H is itself invariant under the duality

transformations we are using, the matrix T still enters this part of the reduction. The

reason for this is that the field strength, while invariant overall, is made up of components

which transform non trivially as can be seen from its definition (2.6).

As was the case for the reduction of the vector field part of the action we need to be

careful to choose ‘gauge invariant’ definitions of our seven dimensional degrees of freedom.

We find that BB
α has the properties we desire but that Bαβ does not. Therefore we define

a new two form potential as follows.

B7
αβ = Bαβ + AB

[αBB
β] . (2.35)

Then we can proceed with the dimensional reduction of these terms making use of our

orthonormal basis as we did for the vector field strength piece. We find,

− 1

12
H2 = − 1

12
Hᾱβ̄γ̄Hᾱβ̄γ̄ − 1

4
Hᾱβ̄ȳHᾱβ̄ȳ (2.36)

where,

Hᾱβ̄γ̄ = e7α
ᾱ e7β

β̄
e7γ
γ̄ Hαβγ − (e7δ

ᾱ e7β
β̄

e7γ
γ̄ AB

δ Hyβγ + 2 perms.) (2.37)

Hᾱβ̄ȳ = e7α
ᾱ e7β

β̄
e−αHαβγ (2.38)

and

Hαβγ = ∂αB7
βγ − 1

2
FB

αβBB
γ +

1

2
HB

αβAB
γ − 1

2
(A7i

α + AB
αA0i

y )ηij(F7i
βγ + A0i

y FB
βγ)

−(A7i
α + AB

αA0i
y )ηijA

B
[γ∂β]A0i

y (2.39)

Hαβy = HB
αβ − 1

2
A0i

y ηij(F j
αβ + 2AB

[β∂α]A0i
y + A0i

y FB
αβ) − (A7i

[α + AB
[αA0i

|y|)ηijDβ]A0i
y . (2.40)
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In the above HB is the field strength associated with BB defined in the usual manner.

After a little algebra we then find the following for the final piece of our seven dimensional

action.

S4 =

∫

M7

dx
√

g7e−φ(7)

[

− 1

12
(H7)2 − 1

4
e−2α(HB

αβ − 1

2
A0i

y ηijF̃ j
αβ −A7i

[αηijDβ]A0i
y )2

]

.

(2.41)

In this expression we have used the following definition of the seven dimensional three-form

field strength.

H7
αβγ = ∂αB7

βγ − 1

2
FB

αβBB
γ − 1

2
HB

αβAB
γ − 1

2
A7i

α ηijF̃ j
βγ + cyclic perms. (2.42)

Combining all the pieces we have obtained in this subsection we then obtain the follow-

ing for the reduction of the NS-NS sector of type II string theory on this class of T-folds.

S7 =

∫

M7

√

−g7e−φ(7)

[

R(7) − (∂α)2 + (∂φ(7))2 − 1

4
e2α(FB)2

+
1

8
tr

(

DM−1
0 DM0

)

− 1

4(2π)2
tr(T T M−1

0 TM0 + T 2)

− 1

4
F̃ i

αβM−1
0ij F̃ jαβ − 1

2
e−2αDαA0i

y M−1ij
0 DαA0j

y

− 1

12
(H7)2 − 1

4
e−2α(HB

αβ−
1

2
A0i

y ηijF̃ j
αβ−A7i

[αηijDβ]A0i
y .)2

]

.(2.43)

In this action we have the following field strength and covariant derivative definitions.

FB
αβ = 2∂[αAB

β] (2.44)

HB
αβ = 2∂[αBB

β] (2.45)

F̃ i
αβ = 2∂[αA7i

β] + A0i
y FB

αβ + 2AB
[β

T i
j

2π
A7j

α] (2.46)

H7
αβγ = ∂αB7

βγ − 1

2
FB

αβBB
γ − 1

2
HB

αβAB
γ − 1

2
A7i

α ηijF̃ j
βγ + cyclic perms. (2.47)

DαM0 = ∂αM0 −
TM0

2π
AB

α − M0T
T

2π
AB

α (2.48)

DαA0i
y = ∂αA0i

y −
T i

j

2π
AB

αA0j
y −

T i
j

2π
A7j

α . (2.49)

It is easy to show that this action is that obtained by reducing the NS-NS part of the

ten dimensional action on a three torus, supplemented by various mass and charge terms

which are determined by the duality twist generator T . This is an example of the kind of

massive supergravity we will consider in the next section. In particular, we will calculate

the amount of supersymmetry this type of theory possesses.

In the low energy supergravity limit we have discussed here, the compactifications

which have monodromies within the same O(d, d,R) conjugacy class are equivalent and so

give rise to the same reduced theory [6]. This point will tie in nicely with the discussion of

supersymmetry that will appear in the next section. It should also be pointed out that the
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above reduction implicitly uses the fact that the usual rules for flux quantisation in string

theory are modified when the compact cycles being considered are nongeometric. There

are scalar fields in the lower dimensional theory which originate from the components of

the higher dimensional NS two form with indices on the compact space. For some of these

fields, the fact that these degrees of freedom appear as lower dimensional fields which are

able to vary in value depends crucially on the fact that the integral of the three-form field

strength over certain cycles is not quantised in the usual manner.

3. Supersymmetry and T-fold reduction

This section is split into three main parts. Firstly we shall briefly review the standard

discussion of how one determines the amount of supersymmetry associated with a geometric

dimensional reduction. In the second subsection we will describe the transformation of

various quantities under T-duality. Finally, we will use this information to describe how

the standard discussion for the degree of supersymmetry of a dimensionally reduced theory

is modified in the T-fold case.

A geometrical dimensional reduction proceeds in a series of steps. First one chooses a

Riemannian manifold X, with metric and ansatze for the other fields, on which to compact-

ify the extra dimensions. One then proceeds to rewrite the fields in the higher dimensional

theory in a manner that respects the symmetries of this background. The fields are split up

into representations of the subgroup of the full symmetry group of the theory that is pre-

served by the background. Up until this point nothing in the theory has actually changed.

One has simply relabeled various fields in such a way as to make the rest of the dimen-

sional reduction easier. The change to the content of the theory comes from the rest of the

process. The extra dimensional dependence of the fields is expanded in a series of modes

about the background and various parts of the expanded and rewritten higher dimensional

fields, such as some of these modes, are discarded. The fields are then substituted into the

higher dimensional action, compensators if needed are calculated, and the extra dimensions

are integrated out to leave the lower dimensional theory. All of this has to be performed

in a consistent manner so that every solution to the resulting low energy theory can be

associated to a solution of the higher dimensional one, up to any approximations that are

made in the truncation - which defines the lower dimensional theory. Furthermore, one

might wish the truncation to be ‘physical’ in that the modes one discards in this process

should describe fluctuations which are more massive than those which are kept. The classic

example of this is Kaluza Klein reduction on a torus. In general, however, figuring out how

physically to define the truncation is a highly non-trivial task.

Fortunately, for the Scherk-Schwarz reductions considered in the previous section a

consistent truncation is easily defined. In fact, the ansatze for the fields already includes

this truncation of the full possible field content of the theory.

The question we are interested in is how much supersymmetry is preserved by this

sort of process (note we are interested in the amount of supersymmetry preserved by the

lower dimensional theory as opposed to any specific vacuum of it). Supersymmetry, like

any symmetry, describes the fact that if one mixes up the various fields in the theory
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in a certain manner then one gets back to the same action as one began with. Given

the above discussion, the crucial question becomes whether this mixing up of the fields is

consistent with the expansion and truncation that has been made of the fields - no other

procedure in dimensional reduction changes the theory and so no other procedure can break

supersymmetry. Therefore, a supersymmetry will be preserved in a dimensional reduction

if this process is such that the supersymmetry transformations only mix up parts of the

higher dimensional fields which were kept in the truncated action with other parts that

were kept. If this is not the case then the supersymmetry can not be preserved in the lower

dimensional theory.

For commonly used geometrical compactifications and truncations there is a single

mathematical rule which tells us which supersymmetries are preserved by dimensional

reduction on direct product spacetimes. A supersymmetry is preserved if its parameter, ε,

can be written as a product of an external and an internal spinor, the latter being a singlet

under the structure group of the spin bundle associated to the internal manifold.1 In other

words, the internal part of the supersymmetry parameter should be globally defined and

nowhere vanishing on the internal space in order for the associated supersymmetry to be

preserved.

This rule is certainly true for the standard Kaluza Klein toroidal reduction where one

truncates to zero modes - in this case all supersymmetry is then preserved. We shall show

shortly that this rule is also true for the kind of Scherk Schwarz reductions we considered

in the previous section when the monodromy is taken to lie in a geometric subgroup of

O(d, d). It is true for truncation to the massless modes on a Calabi-Yau reduction. In more

complicated cases the same rule also holds; indeed in [65] a truncation was proposed for

reductions on manifolds of SU(3) structure with non-vanishing intrinsic torsion which was

constructed to obey this rule.

In the general case where the structure group of the frame bundle fills out the whole of

O(d), there are no singlets in the decomposition of the internal spinors under the structure

group of the spin bundle. However, if the structure group only fills out part of O(d) then

singlets may exist.

To illustrate this consider dimensional reduction on a Calabi-Yau threefold, which is

a six dimensional manifold with SU(3) structure. In fact Calabi-Yau manifolds also have

SU(3) holonomy but this additional constraint is not important here as it relates to the

amount of supersymmetry preserved by the four dimensional Minkowski space vacuum

rather than the amount associated with the theory. Since the structure group of the frame

bundle is SU(3) the structure group of the associated spin bundle is also SU(3) ⊂ Spin(6)

where Spin(6) is the double cover of SO(6). A spinor of Spin(6) is in the fundamental of

SU(4) and so it is easy to see, if one imagines the internal spinor as a four component column

vector, that the SU(3) structure will only leave one of the four independent components

1Since in a geometric compactification the internal manifold is Riemannian it has a metric tensor which

constitutes an O(d) structure for a d dimensional compact geometric space. The structure group of the

frame bundle of the manifold is reduced from Gl(d) to (a subgroup of) O(d) in this case. Thus the frame

bundle admits a principle sub-bundle which is the orthonormal frame bundle. If the manifold is spin this

principle bundle has an associated spin bundle — sections of which form the spinor fields on the manifold.
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of this spinor representation invariant. More formally the 4 of SU(4) decomposes under

SU(4) ⊃ SU(3) × U(1) as 4 = (1,3) + (3,−1) where the first numbers in the brackets are

the dimension of the relevant SU(3) representations and the second numbers are the U(1)

charges. Thus we obtain one SU(3) singlet under this decomposition. Therefore, standard

compactification on a Calabi-Yau threefold (or indeed any six dimensional manifold of

SU(3) structure where the truncation used has been appropriately defined) preserves one

quarter of the supersymmetry of the higher dimensional theory.

More generally, this condition for preservation of a certain number of supersymmetries

in type II reductions would involve products of G-structures (see for example [65]). This

is because the two higher dimensional supersymmetry parameters, ε±, can be decomposed

using two different internal spinors χ± which are associated to different G-structures. For

example, if one follows this rule, continuing to examine the conditions for N = 2 supersym-

metry in a reduction to four dimensions, the relevant condition on the internal manifold

is that it should have SU(3) × SU(3) structure. The two internal spinors, χ±, which we

require to be present by demanding N = 2 supersymmetry, each define an SU(3) structure.

Locally, these two spinors need not be parallel and so the two SU(3) structures are different

and locally define an SU(2) structure. However, if the SU(2) structure is globally defined

then the dimensionally reduced action could instead be written as an N = 4 theory in four

dimensions. Therefore, to avoid obtaining a lower dimensional theory that can be written

in an N = 4 manner, the two spinors must be somewhere parallel. The SU(3) structure

example mentioned above is a special case of SU(3)×SU(3) structure where the two spinors

are everywhere parallel (see for example [65]).

An important point to note here is that although in geometric reductions the higher

dimensional supersymmetry parameters can be associated to a product of G-structures, this

product is defined on a single spin bundle (and hence we can consider the intersection of

the two structures). So even though the spinors ε± are associated to different G-structures,

they are sections of the same spin bundle. This is because there is only one orthonormal

frame bundle with one associated spin bundle. This is one of the features of the discussion

which will be modified in the forthcoming sections when we consider T-folds.

3.1 The behaviour of various quantities under T-duality

We wish to propose a modification to the rule for the amount of supersymmetry preserved

by geometrical reductions, given above, to the case of non-geometric T-fold compactifica-

tions. However, before we can describe these modifications we need to know how various

quantities, in particular the supersymmetry parameters, behave under T-duality transfor-

mations.2

For simplicity, in the rest of this paper we will consider the case where, in the lower

dimensional theories we are interested in, supermultiplets containing fields coming from

metric and B field components with a single fibre index are truncated. In terms of the

massive supergravity presented in the last section for example this would correspond to the

2See appendix A for some comments about local reformulations of the theories under consideration which

are relevant to this and following sections.
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(consistent) truncation where the supermultiplets containing the calligraphic gauge fields

(i.e. A0i
y and A7i

α ) are set to zero. This truncation of the general case provides a vast

simplification in the discussion that will be pursued in this section while still including

many of the novel mathematical (non-) geometric structures that arise in these contexts.

It would be of considerable interest to consider the more general case where these terms

are not zero, however, and this will be pursued by the authors in future work.

Much of what we need to know about the behaviour of the supersymmetry parameters

of type II theories under T-duality has been given in the literature [38, 37, 39]. In this

work the relevant transformation rules were obtained by examining how the supersymmetry

variations change under T-duality. Using the well known results for how the NS-NS sector

transforms, such considerations are enough to fix the transformation properties of the

spinor parameters.

In this paper we are interested in transformations whose generator, T , is not simply

that of some geometric transformation such as a rotation. Of the d(2d − 1) generators

of the group SO(d, d), d2 correspond to general linear coordinate transformations, and

d(d − 1)/2 correspond to B-field shifts. As such we shall follow [38] in only considering

a subgroup of the full O(d, d) T-duality group which contains the interesting new cases

and which corresponds to symmetries of a given theory, rather than dualities which swap

IIA and IIB. In fact we shall consider an SO(d) × SO(d) subgroup which includes an

SO(d) group which is simply the ordinary rotations. We consider this slightly larger than

necessary subgroup as this choice makes the following discussion somewhat clearer. The

generalisation to the SO(d, d) case is straightforward, and will be discussed in appendix B.

Our T-duality group elements will take the following form,

O =
1

2

(

S + R S − R

S − R S + R

)

(3.1)

where S and R are (d+b)×(d+b) dimensional matrices which are related to SO(d) matrices

S and R as follows,

S =

(

S
1b

)

R =

(

R
1b

)

. (3.2)

Here d is the dimension of the fibre and b is the dimension of the base. In this basis our

O(d, d) invariant metric is given by the following 2(d + b) × 2(d + b) matrix,

η =

(

0 1

1 0

)

(3.3)

and so OT ηO = η as required. The elements corresponding to ordinary rotations of the

fibre are those where S = R. Note that O is analogous to Ω as introduced in section 2.2.

However we have encoded the same information in higher dimensional matrices so that we

can describe the relevant transformations as actions on points living in the entire compact

space and not just the fibre. As such the dimension of O corresponds to the whole fibre

bundle dimension, while Ω had dimension 2d, and thus was associated only to the fibre.
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We now consider the transformation rule for the metric and NS two form under O. As

in the 2-dimensional case, the metric and two form on the fibre bundle (which has overall

dimension d + b) can be combined into a matrix M which takes the same form as before,

i.e.

M =

(

G−1 −G−1B

BG−1 G − BG−1B

)

(3.4)

where now the blocks are (d + b) × (d + b) dimensional. Under T-duality M → OMOT .

Using the explicit form for O we find the following transformation property for the inverse

metric [38, 75]:

G−1 → Q−G−1QT
− = Q+G−1QT

+ (3.5)

In the above we have used the following definitions of the (d + b) dimensional matrices Q:

Q− =
1

2
[(S + R) + (S − R)(G + B)] (3.6)

Q+ =
1

2
[(S + R) − (S − R)(G − B)] .

These equations imply two possible different transformations for the vielbein of the compact

space under the transformation (3.1), either

eM
ā → êM

(−)ā = QM
−NeN

ā (3.7)

or eM
ā → êM

(+)ā = QM
+NeN

ā .

Here M is a (d + b)-dimensional spacetime index and ā an orthonormal basis index. These

two vielbeins are then related by a local Lorentz transformation as follows,

ê M
(+)b̄ = êM

(−)āΛ
ā
b̄ where (3.8)

Λ = e−1Q−1
− Q+e (3.9)

Physically the situation is as follows. The vielbein eM
ā can be considered as arising from

either the left (+) or right (−) moving sector of the string worldsheet. Under a T-duality

transformation it transforms to either êM
(+)ā or êM

(−)ā depending on its worldsheet origin.

These two local Lorentz frames are twisted relative to each other by an amount Λ. This

generalises the statement that a single T-duality on a flat background is just parity on one

of the world sheet sectors to the case of non-trivial backgrounds and more complicated

transformations.

We see then from equation (3.7) that the two vielbeins transform differently, and both

transformations are nonlinear. Thus from the point of view of discussing vielbeins on a

T-fold we are left with the following picture. We define the left and right moving vielbeins

separately. The transition functions seen by these vielbeins are a nonlinear realisation

of SO(d) transformations. Thus there are objects which resemble an orthonormal frame

bundle. The differences to the geometric case lie in the fact that there are two ‘orthonormal

frame bundles’ with (in general) different transition functions - one for the left and one
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for the right moving sectors. In addition the transition functions on these objects act non-

linearly. In the limit where we take S = R (which corresponds to ordinary rotations) we

find that Q− = Q+ = S and the frame bundles reduce to the usual single orthonormal

frame bundle with linearly acting transition functions.

Given these transformations for the orthonormal frames, how do the supersymmetry

parameters transform under the T-duality element (3.1)? We denote the ten dimensional

supersymmetry transformation parameters of our type II theories by ε±. We have fol-

lowed [38] here in that the subscripts ’±’ denote the worldsheet sector to which the spinor

is associated. We choose ε− to have positive chirality in both type II theories which then

fixes the chirality of ε+ in both cases.

We define the spinor representation associated with Λ in the usual manner:

Σ−1
relativeΓ

aΣrelative = Λa
bΓ

b . (3.10)

The transformation rules for the supersymmetry parameters have then been found in the

paper by Hassan, [38], to be,

ε− → Σtotalε− (3.11)

ε+ → ΣtotalΣrelativeε+ (3.12)

where the explicit expression for Σrelative is given by,

Σrelative = 2−
d
2

√

det(Q− + Q+)

detQ−







1 +

[d/2]
∑

p=1

(−1)p

p! 2p
Ai1i2 . . .Ai2p−1i2pΓi1i2...i2p−1i2p







, (3.13)

where Q± are the d × d blocks of the matrices Q±, which are associated to the fibre, and

the quantities Aij are components of the following matrix:

Aij =
[

(1d − S−1R)−1(1d + S−1R) + B
]−1

ij
(3.14)

where the {ij} indices are raised by matrix inversion, and B is the B-field on the d dimen-

sional fibre.

Now the work by Hassan is concerned solely with local considerations, and therefore the

overall rotation on the spinors, Σtotal, can be set to the identity using the local Lorentz sym-

metry. This makes the spinor ε− invariant under the T-duality transformations. However,

in our case we wish to use the spinor transformations as transition functions. Therefore,

we are no longer free to make the choice Σtotal = 1. We must specify the total action of

the transformations on the spinors up to a conjugacy class, as this is the degree to which

the transition functions are defined given the presence of local Lorentz symmetry. This

should be compared with the similar situation which exists in the geometric case. There

Σrelative = 1, and Σtotal implements the rotation on the spinors associated to the rotation

of the underlying frame.

There are a number of ways in which we can isolate the overall rotation on the spinors.

The structure of the ‘orthonormal frame bundles’ discussed above makes the correct choice

relatively clear - one should pick the overall rotation so that there is a correspondence
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between the action on the orthonormal frames and the action on the spinors which preserves

group structure. In other words the left and right moving spin bundles should be ‘associated

to’ the left and right moving frame bundles. One consequence of this link is that, due to

the nonlinear and B-dependent nature of the transition functions on the frame bundles,

the transition functions on the spin bundles will in general depend on G and B as well

as S and R. There are a number of symmetries we expect the spinor transition functions

to obey, which follow from the association with the orthonormal frame bundles. Firstly,

in the limit of flat space with no B field (i.e. G + B = 11), Q+ and Q− are simply the

linearly acting rotations R and S respectively. Therefore, we expect the transformations

on the spinors to be simply given by the spinor representations of R and S in that case.

Secondly, we notice that for a general background there is a symmetry Q+ ↔ Q− if we take

B → −B and exchange S ↔ R. This symmetry exchanges the left and right moving world

sheet sectors and so the two frame bundles. Therefore, we expect this same symmetry

to be present in the spinor transition functions; in particular it should exchange the the

transition functions for ε+ and ε−.

In practical terms, how do we actually construct the overall rotation? The simplest

method is the following. Consider a background that is a T d fibration over an S1 base

with some monodromy associated with the non-contractible loop of the base. We take the

monodromy to lie in the non-trivial subgroup SO(d)×SO(d) that we have been discussing.

As we traverse the S1, starting at y = 0 and ending at y = 2π, the orthonormal frames

e± undergo field-dependent transformations implemented by Q±. Due to the monodromy

in the background these frames do not in general come back to themselves at y = 2π,

but are related to the original frames by some T-duality transformation. Now consider

parallel transporting the spinors ε± around paths where all of the coordinates are constant

except for y. The left moving spinor is transported using the spin connection constructed

from the left moving vielbein, e+, and similarly for the right moving sector. We find that

when we compare the two spinors with themselves at y = 0 = 2π they have undergone

a rotation. This rotation is defined up to a conjugacy class due to the local Lorentz

invariance on the coordinate patch. We get different rotations on the left and right moving

spinors and these have precisely the properties that we require for those associated to the

monodromy element we have picked - they obey all of the symmetries mentioned above

(this is guaranteed because our parallel transport operators involve spin connections derived

from the two vielbeins e±, and the vielbeins satisfy these properties) and, in particular,

give the correct relative rotation, Σrelative, given in (3.13), which was derived by Hassan

using another method.

By carrying out this construction for an arbitrary monodromy within our SO(d)×SO(d)

subgroup we can find all the previously unknown transition functions on the supersymmetry

parameters. These can then be used to construct the spin bundles associated to a given

T-fold. We emphasise that the construction we have outlined here need not be based upon

the T-fold we are finally interested in. It constitutes instead merely a trick for finding

transition functions which, once we have them, can be used in any appropriate T-fold

context we desire.
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Example. To give a concrete illustration of the above discussion we will now present the

details for a simple example. We shall examine the case where we have a T 2 fibre on an

S1 base with a U(1) × U(1) monodromy in a ‘nontrivial’ subgroup of SO(2, 2, Z).

First, we label the coordinates on the T 2 fibre by zi, i = 1, 2, and the coordinate on

the base S1 by y ∈ [0, 2π]. We will also use the combined coordinate zA, A = 1, 2, 3, where

z3 ≡ y. In these coordinates, the metric on the fibre at y = 0 is given by the usual torus

metric:

G0 =
ρ2

τ2

(

1 τ1

τ1 |τ |2

)

(3.15)

where τ = τ1 + iτ2 is the complex structure modulus, and ρ2 is the volume modulus. It is

convenient to combine the volume modulus into a complex field ρ = ρ1 + iρ2, where ρ1 is

related to the B-field at y = 0 as follows,

B0 =

(

0 ρ1

−ρ1 0

)

(3.16)

We recall that we are considering the truncation where there are no off-diagonal terms in

the metric or B-field between the fibre and the base, i.e. the components which have one

base and one fibre index are set to zero. Therefore, the metric on the fibre bundle at y = 0

is given by

ds2 =
ρ2

τ2

∣

∣dz1 + τdz2
∣

∣

2
+ e2αdy2 (3.17)

where α is a function of the lower-dimensional space. From the form of the metric above,

a natural vielbein and inverse vielbein to take at y = 0 are

eā
A = τ

−1/2
2







ρ
1/2
2 0 0

ρ
1/2
2 τ1 ρ

1/2
2 τ2 0

0 0 eατ
1/2
2






eA
ā = τ

−1/2
2







ρ
−1/2
2 τ2 0 0

−ρ
−1/2
2 τ1 ρ

−1/2
2 0

0 0 e−ατ
1/2
2






(3.18)

Now the torus fibre experiences a monodromy around the base S1. To illustrate our method

we choose this monodromy (and so the transition function action we are calculating) to

take the form

O =



















cos(a) 0 0 0 − sin(a) 0

0 cos(a) 0 sin(a) 0 0

0 0 1 0 0 0

0 − sin(a) 0 cos(a) 0 0

sin(a) 0 0 0 cos(a) 0

0 0 0 0 0 1



















(3.19)

which corresponds to the following rotation matrices S and R (see (3.1)),

S = RT =

(

cos(a) − sin(a)

sin(a) cos(a)

)

(3.20)
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If we compare with Ref. [6] this monodromy lies in the elliptic conjugacy class of SL(2)ρ.

In a stringy application we should take a = π/2 in order to obtain a non-trivial monodromy

within SL(2, Z)ρ. We now require a y-dependent O which implements this monodromy as

we go from y = 0 to y = 2π. The obvious choice is to replace a → ay/2π in the above

expressions. However, it is more convenient to choose the following simpler expressions for

the base space dependent matrices,

S(x(y)) ≡ S(x) =
1√

1 + x2

(

1 −x

x 1

)

, R(x) = S(x)T (3.21)

where x(y) = tan(ay/2π) and so x = 0 and x = tan(a) are the endpoints of the loop in

the base space (we assume a ≤ π/2, so that the parameterisation makes sense). Note that

using x is simply a coordinate choice for the base, and the final answers will not depend on

this choice (we will see this explicitly from our expressions later on). These x-dependent

matrices allow us to calculate the fibre metric and B-field at arbitrary points on the base

space using (2.10), i.e.

M(x) = O(x) M0 O(x)T (3.22)

where M0 is the matrix given in (3.4) constructed from the fibre bundle metric (3.17) and

B-field (3.16). Then using all of these x-dependent quantities we can calculate the matrices

Q+(x) and Q−(x) which describe the transformations of the left and right moving frames

as a function of the S1 base’s coordinate:

e(±)
A
ā
(x) = Q±

A
B(x)eB

ā (3.23)

where eB
ā is the inverse vielbein at y = 0 given in (3.18), and Q±(x) are constructed from

S(x), R(x), and M(x).

We now use the expressions for e(±)(x) to calculate the components of the two asso-

ciated three dimensional spin connections. In fact, we do not need to determine all of the

components of the connections but simply those which appear in the expressions govern-

ing parallel transport of the spinors around the relevant closed loops. Now the spinors

ε±, which arise from the left and right moving sectors on the world-sheet, split up into

external 7-dimensional spinors, η±, and internal 3-dimensional spinors, χ±. Since we are

interested in the internal space, and because we have made the simplification mentioned at

the beginning of section 2, we will only need to deal with the spinors χ± from now on. The

equations for parallel transport around a path where the fibre coordinates are constant are

∇(±)
x χ± = ∂xχ± +

1

4
ω(±)

āb̄
x

Γāb̄χ± = 0 (3.24)

where summation is assumed over the orthonormal indices ā, b̄. It can easily be shown that

the expression for the spin connection components is

ω(±)
āb̄
x

=
∑

A

e(±)
A[ā ∂xe(±)

b̄]
A

. (3.25)
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Using the expressions (3.23) for the left and right moving vielbeins as functions of x this

becomes

ω(±)
āb̄
x

= −e
[ā
A

(

∂x(Q−1
(±)(x))A

B
(Q(±)(x))B

C

)

eb̄]C (3.26)

with summation understood over A,B,C. Notice that the spin connection is now written

in terms of the original vielbein at x = 0. Using this equation we find that the only

non-vanishing spin connection components are

ω(−)
1̄2̄
x

= −ω(+)
1̄2̄
x

= − 2x2(x2 − 1)|ρ|2 + 8x3ρ1 − x4 + 4x2 + 1

|1 + xρ|2(4x2|ρ|2 − 4x(x2 − 1)ρ1 + x4 − 2x2 + 1)
. (3.27)

The simple relation between ω+ and ω− is due to the relationship S = RT for this mon-

odromy. Note also that this spin connection component does not depend on the complex

structure modulus of the torus. This is because the monodromy is in the SL(2)ρ subgroup

of SO(2, 2). We now have the required information to explicitly parallel transport the

spinors around our paths with z1 = z2 = constant. The resulting spinors at x = tan(a)

are given by

χ± = exp

(

−1

2

∫ tan a

0
ω(±)

1̄2̄
x

Γ1̄2̄ dx

)

χ0
± (3.28)

where χ0
± are the spinors at x = 0. Note that from the above expression it is clear,

given that the spin connection contains one x derivative, that we could have chosen any

parameterisation for the closed loop and obtained the same answer. From our explicit

expression for ω(±)
1̄2̄
x

we obtain

−1

2

∫ tan(a)

0
ω(±)

1̄2̄
x

Γ1̄2̄dx = ±1

2

{

− arctan

(

ρ1

ρ2

)

+ arctan

( |ρ|2 tan(a) + ρ1

ρ2

)

+ arctan

(

2ρ2 tan(a)

tan2(a) − 1 − 2 tan(a)ρ1

)}

(

0 −1

1 0

)

(3.29)

where we have chosen the following realisation for the Γ matrices: Γ1̄ = σ1, Γ2̄ = σ3,

where σi are the usual Pauli matrices. The exponential of this matrix then gives the

explicit matrix which takes χ0
± to χ2π

± for this monodromy. Since we therefore now have

the action of the monodromy on both kinds of spinor we have also determined the overall

rotation we have been looking for. Clearly the matrix multiplying χ0
+ is the inverse of that

multiplying χ0
−. This is simply a consequence of the choice of monodromy we have made

in this example. Despite this simple relation, it should be noted that formally the two

transition functions associated to χ± live in the structure groups of two different spinor

bundles.

Note that if we take the flat space limit at y = 0, i.e. take G0 + B0 = 11 (which corre-

sponds to taking ρ = τ = i, although note that the τ modulus does not actually appear, so

its value doesn’t make a difference here), then the factor multiplying the constant matrix

in (3.29) becomes ∓a/2. This is ∓1/2 times the angle which appears in the monodromy

matrix. This makes sense because in the flat space limit Q− = S, Q+ = R and so the

spinors transform via the spin representation of these rotation matrices. From (3.29) we

see that another expected feature of these transformations also holds, namely that taking

a → −a and ρ1 → −ρ1 exchanges the transformation matrices for χ− and χ+.
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As a brief aside before we move on to discuss the preservation of supersymmetry, we

note that in the 2-torus case, the matrix multiplying χ0
± in (3.28) can be written in a nicer

form as the spin representation of the following matrix

A± =

(

1√
det(Q±)

ẽ−1Q±ẽ 0

0 1

)

(3.30)

where Q± is evaluated at x = tan(a) and ẽ is the 2× 2 part of the vielbein e. It turns out

that in the O(2, 2) case, these matrices are orthogonal. In other words,

Σ(A±) = exp

(

−1

2

∫ tan a

0
ω(±)

1̄2̄
x

Γ1̄2̄ dx

)

(3.31)

where Σ denotes the spin representation, obtained in the usual way. Similar comments do

not hold in the case of higher dimensional fibres however.

In any case we now set aside our example and return to the general discussion to show

how to determine the amount of supersymmetry preserved by appropriately defined T-fold

reductions.

3.2 ‘G-structures’ and supersymmetry in the non-geometric case

We are now going to describe a proposal for a simple rule for determining the amount

of supersymmetry preserved by T-fold reductions of the form of a T d bundle over S1

when a sensible truncation is defined in the dimensional reduction process. Our discussion

generalises in an obvious way to more complicated T-fold reductions. As discussed earlier,

we are interested in describing the supersymmetry preserved by the compactified theory

rather than by any particular lower dimensional vacuum. Therefore, we will follow the

analogue of the G-structures story that we outlined at the start of this section. In addition

we repeat that we are considering the case where supermultiplets with fields originating

from higher dimensional metric and B field components with a single fibre index have

been truncated and that we are not considering the ’non-minimal’ cases discussed in the

appendix A.

The rule we propose for the amount of supersymmetry preserved by T-fold reduction

in fact follows along fairly similar lines to the geometric case if the situation is phrased

in terms of structure groups of spin bundles. As in the geometric case we decompose the

spinor parameters into sums of internal and external pieces. We then consider how the

internal pieces of these spinors transform under the structure groups of the relevant spin

bundles (of which there are now two). We propose that the number of singlets in the

decomposition of each internal spinor into representations of the relevant structure group

then determines how many lower dimensional supersymmetries are associated to it in the

case of an appropriately defined truncation.

However, there are crucial differences between the non-geometric and geometric cases.

One obvious difference is that on T-folds the transition functions on the spinor super-

symmetry parameters are generally B and G dependent, as we have seen explicitly in the

previous section. This point deserves a little further discussion. At a first glance one might
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naively assume that this fact, coupled with the above comments, means that the amount

of supersymmetry of the lower dimensional theory is a moduli dependent quantity! This

clearly can not be the case. In fact since we are talking about the theory rather than about

any particular lower dimensional vacuum (and so moduli values) the correct amount of

supersymmetry is the minimum that is obtained when arbitrary values of the moduli are

allowed.

We could however create a different lower dimensional theory if a consistent trunca-

tion were available where some of the lower dimensional fields were set to certain constant

values (indeed we have already done something very similar with the fields we have already

truncated). This could conceivably result in a truncated theory with more supersymmetry

than its parent theory. Such phenomena are well known within supersymmetric compact-

ifications and it should not come as a surprise that examples could also appear in this

context.

The fact that we have two different spin bundles with different transition functions on

them is major difference between the case at hand and that of geometric compactification.

For example, the existence of two globally well defined, nowhere parallel internal spinors

in the geometric case would imply the existence of 4 supersymmetries in the dimensionally

reduced theory if the usual rule where to hold (i.e. two from each of ε+ and ε−). However,

in the T-fold case, the same need not necessarily be true. The two internal spinors could be

sections of different spin bundles. This would lead to us obtaining one lower dimensional

supersymmetry from each higher dimensional spinor parameter - giving us a total of two

rather than four.

Let us examine now the examples of section 2 where we performed a Scherk-Schwarz

reduction and truncation. Do these examples obey the rule we have proposed for the

number of supersymmetries in the lower dimensional theory? In fact, this is a relatively

easy question to answer.

We have, by the nature of our reduction ansatz (2.1), truncated the higher dimensional

theory to consider only field configurations of the form

ψ(y) = g(y)[ψ0] . (3.32)

Which supersymmetries are compatible with this truncation? Clearly from our earlier

discussion only those supersymmetry transformations which, when applied to field config-

urations of this form give back another field configuration also in this form are compatible.

Applying a supersymmetry transformation to a field configuration of this form we find the

following,

(1 + δε)ψ(y) = (1 + δε)g(y)[ψ0] (3.33)

= g(y)[(1 + δΣ−1ε)ψ0] . (3.34)

Thus only if (1 + δΣ−1ε)ψ0 = ψ′
0, where ψ′

0 is independent of y, do we get back to a

field configuration of the same form. Given Σ’s dependence on y in our examples this

means that only supersymmetries of the form ε = Σε0, where ε0 is not dependent on the

internal coordinates, are compatible with the truncation. However, such spinors are not
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globally well defined unless Σε0 = ε0. In other cases the spinor ε will be double valued at

y = 0, 2π. Thus as our rule states, the supersymmetries which are preserved in Scherk-

Schwarz reduction arise from internal spinors which are singlets under the monodromy

(and so the structure group).

Clearly there is a lot of interesting (non)-geometrical structure in the above. In addition

we have now answered the question we set out to address: we know how to calculate the

amount of supersymmetry preserved by certain T-fold reductions.

Some examples. Let us illustrate our discussion by working out the amount of super-

symmetry associated with the appropriate truncations (dropping the supermultiplets con-

taining the calligraphic fields of section 2) of the massive supergravity theories discussed

earlier in the paper. We therefore consider the case where we have a T d fibration over an

S1 base. The structure group of the spin bundles is simply given by the monodromy eT

which is introduced into the background. Therefore, in all of our cases the monodromy

simply constitutes a single operator which then lies in a U(1) subgroup of O(d, d). One

can then use the discussion of this section to determine, for any given monodromy, how

this U(1) acts on the left and right moving spinors. For the case of a T 2 fibre the 16 of

SO(9, 1) breaks up into (8,2) representations of SO(6, 1)×SO(3). Now clearly because the

spinor of SO(3) is in the fundamental of SU(2), a U(1) structure group will leave none of

the degrees of freedom of the 2 invariant. For general values of B and G the monodromy

will result in a non-trivial structure group for both spin bundles, as can be seen from our

example of the previous subsection. Therefore in general we will be left with none of the

higher dimensional supersymmetries being present in the lower dimensional theory. Thus

in the general case the resulting 7-dimensional theory, as presented in section 2, has no

supersymmetry.

However, as discussed earlier, if one takes a truncation of the lower dimensional theory

then it is possible that this truncated theory could contain more supersymmetry than its

parent. Let us consider the particular example presented in section 3.1 where we chose a

certain monodromy for the T 2 fibre (3.19) and see if this occurs in this case. By considering

the scalar potential (2.20) associated to this monodromy, one finds that a consistent trun-

cation can be made by setting ρ = i, as this minimises the potential for the relevant moduli.

However in this case, even after such a truncation, we see from our expressions at the end of

section 3 that the monodromy still acts on both types of spinor in a non-trivial way. Thus

for this particular choice of monodromy the truncated theory also has no supersymmetry

and the phenomenon of enhancement of symmetry on truncation does not occur.

For the case of a T 3 fibre, the story for the general case is slightly different. The 16 of

SO(9, 1) breaks up into (4,2) + (4′,2′) representations of SO(5, 1) × SO(4). Now the two

Weyl spinors of SO(4) that arise here transform under different SU(2) subgroups and so

one of these will remain invariant if we arrange matters so that the U(1) is a subgroup of

the other SU(2). The analysis of the other SU(2) will follow as in the case of the T 2 fibre.

Therefore, in general half the supersymmetries associated to ε+ and ε− are preserved, and

so half of the possible supersymmetries in the six dimensional theory are preserved, so we

obtain either (1, 1) or (2, 0) supersymmetry in 6 dimensions.
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As before, a consistent truncation of the lower dimensional theory could result in more

supersymmetry with different numbers of supersymmetries coming from the two higher

dimensional supersymmetry parameters for certain choices of monodromy.

Similar analyses can be pursued for all higher dimensional fibres. Clearly the arguments

described in this section can also easily be extended to deal with more general T-fold

constructions, where the base is not simply S1.

4. Conclusions

In this paper we have considered the dimensional reduction of type II supergravity theories

on T-folds. We began by briefly discussing the dimensional reduction of higher dimensional

actions to obtain lower dimensional massive supergravity theories. We then went on to dis-

cuss some underlying (non-) geometric structures associated with these compactifications

in order to calculate how much supersymmetry the lower dimensional theories possess.

We showed that associated with these spaces there are two ‘orthonormal frame bun-

dles’, one associated with each of the left and right moving sectors of the string worldsheet.

These have non-linearly acting, field dependent transition functions on them. Associated

to these orthonormal frame bundles, in some sense, are two spin bundles. Due to the nature

of the action of T-duality on the relevant spinors these also have field dependent transition

functions. By examining the subset of the full field dependent representation of SO(d) that

these transition functions take in any one case, we were able to identify any spinors that

are invariant under the structure group of the bundle of which they are sections. As in

the geometric case this information then told us how much supersymmetry to expect in

an appropriately defined dimensionally reduced theory. All of the structure we described

reduces to the usual structure of a single orthonormal frame and spin bundle etc. when

the structure group is taken to lie within a geometric subgroup. We finally illustrated

our discussion by calculating the amount of supersymmetry associated with truncations of

various massive supergravity theories that have been presented in the literature and in the

early part of this paper. It should be noted that we have been concerned in this paper

with the amount of supersymmetry associated to the compactified theory rather than any

one particular lower dimensional vacuum.

There is clearly much work still to be done on the investigation of various properties

of T-folds. One of the more interesting directions for future work would be to look for

connections between the structure presented here and mathematical frameworks such as

generalised complex geometry.

Acknowledgments

We would like to thank the following people for extremely useful discussions and emails,

J. Figueroa-O’Farrill, S.F. Hassan, V. Jejjala and S. Ross. We would also like to especially

thank S. Morris for collaboration during the early stages of this project, D. Smith and

C. Hull for very many helpful discussions and comments and D. Waldram for very helpful

comments on the manuscript. J.G. is funded by PPARC and E.H.J. by EPSRC.

– 23 –



J
H
E
P
0
5
(
2
0
0
6
)
0
7
1

A. Coset reformulations

In this paper when we have considered type II supergravity compactified on a torus we have

used the formulation of this theory with the minimum number of degrees of freedom in

it. There are various other formulations of these theories. Indeed two such reformulations

are given in the paper of Maharana and Schwarz [74]. These descriptions of the theory

essentially constitute introducing extra degrees of freedom into the theory as well as extra

auxiliary gauge symmetries in order to remove them again. This kind of procedure might

be carried out, for example, in order to linearise the action of the T-duality transformations

acting on the fields. Locally these reformulations of the theory are all physically equivalent.

One can recover the description of the theory used in this paper from one of these coset

formulations merely by stipulating a specific gauge choice for the auxiliaries. Globally,

however, the formulations can differ. The presence of the auxiliary gauge symmetries can

lead to a richer global structure than is present in the minimal version of the theory. One

could, for example, have Wilson lines in these gauge fields. It would then be impossible to

choose a gauge to recover the minimal formulation on every coordinate patch at the same

time.

In this paper we only consider the standard formulation and the supersymmetry of

compactifications on T-folds which are constructed within this framework. It would clearly

be of interest to study the coset reformulations of this theory in this context as well.

However, this is beyond the scope of this paper. It should be pointed out that our results

do apply to a subset of the configurations that can result from these other formulations.

The relevant subset is that where the global structure of the auxiliary gauge fields is such

that we can make the gauge choice to restore the minimal formulation simultaneously on

every coordinate patch.3

B. Extension to more general SO(d, d) monodromies

In the main body of this paper we have considered monodromies which lie in a d(d− 1)/2-

dimensional subgroup of SO(d, d) and take the “non-trivial” form given in (3.1). However,

we can consider more general elements of SO(d, d) by combining these non-trivial twists

with general coordinate transformations and B-shifts. In the case d = 2 we can generate a

general element of SO(2, 2) by the following product of group elements,

Ototal = ΛBO (B.1)

where Λ is a coordinate transformation matrix, B defines a B-shift and O is a non-trivial

SO(2) × SO(2) matrix of the form (3.1). Explicitly, the B-shifts take the following form,

Bi =

(

1 0

bi 1

)

3We would like to thank Chris Hull for pointing out the importance of these reformulations of the theory

in this context.
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and the matrix Λ is given by

Λ =

(

λ 0

0 (λT )−1

)

where λ is the 2× 2 matrix associated to the coordinate transformation. We now consider

the action of the element Ototal on the spinors ε+ and ε−. Firstly, we note that B-shifts

have no effect on either spinor parameters, but the value of B does enter the matrices Σ(±),

which are the spinor transformation matrices associated to the non-trivial element O. So

the effective action on the spinors ε± is

ε+ → L Σ(+)ε+ (B.2)

ε− → L Σ(−)ε− (B.3)

where L is the spin representation of the coordinate transformation Λ (note that the spinors

will only “see” the rotation part of the matrix Λ). For d ≥ 3 the situation is slightly

different as we can generate all elements of SO(d, d) from B-shifts, coordinate rotations (as

opposed to general coordinate transformations) and non-trivial twists. This can be seen

by considering the Lie algebra elements associated to each of the transformations, and by

calculating their commutators. One finds that a general element of SO(d, d), d ≥ 3, can be

written as

Ototal = LO3B3O2B2O1 (B.4)

where L is a coordinate rotation. The corresponding spinor transformations are then

ε+ → L Σ
(+)
3 Σ

(+)
2 Σ

(+)
1 ε+ (B.5)

ε− → L Σ
(−)
3 Σ

(−)
2 Σ

(−)
1 ε− (B.6)

Note that the fact that B changes is important in these transformations, as a different

value of B will enter each Σi. With this information we could now tackle a T-fold with

monodromy in the full connected subgroup of SO(d, d).
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